Download text file or Fork me on GitHub.
Main
if __name__ == '__main__': main()
List
<list> = <list>[from_inclusive : to_exclusive : step_size] <list>.append(<el>) <list>.extend(<collection>) <list> += [<el>] <list> += <collection>
<list>.sort() <list>.reverse() <list> = sorted(<collection>) <iter> = reversed(<list>)
sum_of_elements = sum(<collection>) elementwise_sum = [sum(pair) for pair in zip(list_a, list_b)] sorted_by_second = sorted(<collection>, key=lambda el: el[1]) sorted_by_both = sorted(<collection>, key=lambda el: (el[1], el[0])) flattened_list = list(itertools.chain.from_iterable(<list>)) list_of_chars = list(<str>) product_of_elems = functools.reduce(lambda out, x: out * x, <collection>) no_duplicates = list(dict.fromkeys(<list>))
index = <list>.index(<el>) # Returns first index of item. <list>.insert(index, <el>) # Inserts item at index and moves the rest to the right. <el> = <list>.pop([index]) # Removes and returns item at index or from the end. <list>.remove(<el>) # Removes first occurrence of item. <list>.clear() # Removes all items.
Dictionary
<view> = <dict>.keys() <view> = <dict>.values() <view> = <dict>.items()
value = <dict>.get(key, default) # Returns default if key does not exist. value = <dict>.setdefault(key, default) # Same, but also adds default to dict. <dict> = collections.defaultdict(<type>) # Creates a dictionary with default value of type. <dict> = collections.defaultdict(lambda: 1) # Creates a dictionary with default value 1.
<dict>.update(<dict>) # Or: dict_a = {**dict_a, **dict_b}. <dict> = dict(<list>) # Initiates a dict from list of key-value pairs. <dict> = dict(zip(keys, values)) # Initiates a dict from two lists. <dict> = dict.fromkeys(keys [, value]) # Initiates a dict from list of keys.
value = <dict>.pop(key) # Removes item from dictionary. {k: v for k, v in <dict>.items() if k in keys} # Filters dictionary by keys.
Counter
>>> from collections import Counter >>> colors = ['blue', 'red', 'blue', 'yellow', 'blue', 'red'] >>> counter = Counter(colors) Counter({'blue': 3, 'red': 2, 'yellow': 1}) >>> counter.most_common()[0][0] 'blue'
Set
<set> = set() <set>.add(<el>) <set>.update(<collection>) <set> |= {<el>} <set> |= <set>
<set> = <set>.union(<coll.>) # Or: <set> | <set> <set> = <set>.intersection(<coll.>) # Or: <set> & <set> <set> = <set>.difference(<coll.>) # Or: <set> - <set> <set> = <set>.symmetric_difference(<coll.>) # Or: <set> ^ <set> <bool> = <set>.issubset(<coll.>) # Or: <set> <= <set> <bool> = <set>.issuperset(<coll.>) # Or: <set> >= <set>
<set>.remove(<el>) # Throws error. <set>.discard(<el>) # Doesn't throw error.
Frozenset
Is hashable and can be used as a key in dictionary.
<frozenset> = frozenset(<collection>)
Range
range(to_exclusive) range(from_inclusive, to_exclusive) range(from_inclusive, to_exclusive, step_size) range(from_inclusive, to_exclusive, -step_size)
from_inclusive = <range>.start to_exclusive = <range>.stop
Enumerate
for i, el in enumerate(<collection> [, i_start]): ...
Named Tuple
>>> Point = collections.namedtuple('Point', 'x y') >>> p = Point(1, y=2) Point(x=1, y=2) >>> p[0] 1 >>> p.x 1 >>> getattr(p, 'y') 2 >>> p._fields # Or: Point._fields ('x', 'y')
Iterator
<iter> = iter(<collection>) <iter> = iter(<function>, to_exclusive)
Reads input until it reaches an empty line:
for line in iter(input, ''): ...
Same, but prints a message every time:
from functools import partial for line in iter(partial(input, 'Please enter value: '), ''): ...
Next
Returns next item. If there are no more items it raises exception or returns default if specified.
<el> = next(<iter> [, default])
Skips first item:
next(<iter>) for element in <iter>: ...
Generator
Convenient way to implement the iterator protocol.
def step(start, step_size): while True: yield start start += step_size
>>> stepper = step(10, 2) >>> next(stepper), next(stepper), next(stepper) (10, 12, 14)
Type
<type> = type(<el>) # <class 'int'> / <class 'str'> / ...
from numbers import Number, Integral, Real, Rational, Complex <bool> = isinstance(<el>, Number)
String
<str> = <str>.strip() # Strips all whitespace characters from both ends. <str> = <str>.strip('<chars>') # Strips all passed characters from both ends.
<list> = <str>.split() # Splits on any whitespace character. <list> = <str>.split(sep=None, maxsplit=-1) # Splits on 'sep' str at most 'maxsplit' times. <str> = <str>.join(<list>) # Joins elements using string as separator.
<str> = <str>.replace(old_str, new_str) <bool> = <str>.startswith(<sub_str>) # Pass tuple of strings for multiple options. <bool> = <str>.endswith(<sub_str>) # Pass tuple of strings for multiple options. <int> = <str>.index(<sub_str>) # Returns first index of a substring. <bool> = <str>.isnumeric() # True if str contains only numeric characters. <list> = textwrap.wrap(<str>, width) # Nicely breaks string into lines.
Char
<str> = chr(<int>) # Converts int to unicode char. <int> = ord(<str>) # Converts unicode char to int.
>>> ord('0'), ord('9') (48, 57) >>> ord('A'), ord('Z') (65, 90) >>> ord('a'), ord('z') (97, 122)
Regex
import re <str> = re.sub(<regex>, new, text, count=0) # Substitutes all occurrences. <list> = re.findall(<regex>, text) # Returns all occurrences. <list> = re.split(<regex>, text, maxsplit=0) # Use brackets in regex to keep the matches. <Match> = re.search(<regex>, text) # Searches for first occurrence of pattern. <Match> = re.match(<regex>, text) # Searches only at the beginning of the text. <iter> = re.finditer(<regex>, text) # Returns all occurrences as match objects.
- Parameter
'flags=re.IGNORECASE'
can be used with all functions. - Parameter
'flags=re.DOTALL'
makes dot also accept newline. - Use
r'\1'
or'\\\\1'
for backreference. - Use
'?'
to make operators non-greedy.
Match Object
<str> = <Match>.group() # Whole match. <str> = <Match>.group(1) # Part in first bracket. <tuple> = <Match>.groups() # All bracketed parts. <int> = <Match>.start() # Start index of a match. <int> = <Match>.end() # Exclusive end index of a match.
Special Sequences
Use capital letter for negation.
'\d' == '[0-9]' # Digit '\s' == '[ \t\n\r\f\v]' # Whitespace '\w' == '[a-zA-Z0-9_]' # Alphanumeric
Format
<str> = f'{<el_1>}, {<el_2>}' <str> = '{}, {}'.format(<el_1>, <el_2>)
>>> Person = namedtuple('Person', 'name height') >>> person = Person('Jean-Luc', 187) >>> f'{person.height:10}' ' 187' >>> '{p.height:10}'.format(p=person) ' 187'
General Options
{<el>:<10} # '<el> ' {<el>:>10} # ' <el>' {<el>:^10} # ' <el> ' {<el>:->10} # '------<el>' {<el>:>0} # '<el>'
String Options
'!r'
calls object's repr() method, instead of format(), to get a string.
{'abcde'!r:<10} # "'abcde' "
{'abcde':.3} # 'abc' {'abcde':10.3} # 'abc '
Number Options
{1.23456:.3f} # '1.235' {1.23456:10.3f} # ' 1.235'
{ 123456:10,} # ' 123,456' { 123456:10_} # ' 123_456' { 123456:+10} # ' +123456' {-123456:=10} # '- 123456' { 123456: } # ' 123456' {-123456: } # '-123456'
{65:c} # 'A' {3:08b} # '00000011' -> Binary with leading zeros. {3:0<8b} # '11000000' -> Binary with trailing zeros.
Float presentation types:
'f'
- Fixed point:.<precision>f
'%'
- Percent:.<precision>%
'e'
- Exponent
Integer presentation types:
'c'
- character'b'
- binary'x'
- hex'X'
- HEX
Numbers
Basic Functions
<num> = pow(<num>, <num>) # Or: <num> ** <num> <real> = abs(<num>) <real> = round(<real> [, ndigits])
Constants
Trigonometry
from math import cos, acos, sin, asin, tan, atan, degrees, radians
Logarithm
from math import log, log10, log2 <float> = log(<real> [, base]) # Base e, if not specified.
Infinity, nan
from math import inf, nan, isinf, isnan
Or:
float('inf'), float('nan')
Random
from random import random, randint, choice, shuffle <float> = random() <int> = randint(from_inclusive, to_inclusive) <el> = choice(<list>) shuffle(<list>)
Datetime
from datetime import datetime now = datetime.now() now.month # 3 now.strftime('%Y%m%d') # '20180315' now.strftime('%Y%m%d%H%M%S') # '20180315002834' <datetime> = datetime.strptime('2015-05-12 00:39', '%Y-%m-%d %H:%M')
Arguments
'*'
is the splat operator, that takes a list as input, and expands it into actual positional arguments in the function call.
args = (1, 2) kwargs = {'x': 3, 'y': 4, 'z': 5} func(*args, **kwargs)
Is the same as:
func(1, 2, x=3, y=4, z=5)
Splat operator can also be used in function declarations:
def add(*a): return sum(a)
And in few other places:
>>> a = (1, 2, 3) >>> [*a] [1, 2, 3]
>>> head, *body, tail = [1, 2, 3, 4] >>> body [2, 3]
Inline
Lambda
lambda: <return_value> lambda <argument_1>, <argument_2>: <return_value>
Comprehension
<list> = [i+1 for i in range(10)] # [1, 2, ..., 10] <set> = {i for i in range(10) if i > 5} # {6, 7, 8, 9} <dict> = {i: i*2 for i in range(10)} # {0: 0, 1: 2, ..., 9: 18} <iter> = (i+5 for i in range(10)) # (5, 6, ..., 14)
out = [i+j for i in range(10) for j in range(10)]
Is the same as:
out = [] for i in range(10): for j in range(10): out.append(i+j)
Map, Filter, Reduce
from functools import reduce <iter> = map(lambda x: x + 1, range(10)) # (1, 2, ..., 10) <iter> = filter(lambda x: x > 5, range(10)) # (6, 7, 8, 9) <int> = reduce(lambda out, x: out + x, range(10)) # 45
Any, All
<bool> = any(<collection>) # False if empty. <bool> = all(el[1] for el in <collection>) # True if empty.
If - Else
<expression_if_true> if <condition> else <expression_if_false>
>>> [a if a else 'zero' for a in (0, 1, 0, 3)] ['zero', 1, 'zero', 3]
Namedtuple, Enum, Class
from collections import namedtuple Point = namedtuple('Point', 'x y') point = Point(0, 0)
from enum import Enum Direction = Enum('Direction', 'n e s w') Cutlery = Enum('Cutlery', {'fork': 1, 'knife': 2, 'spoon': 3})
# Warning: Objects will share the objects that are initialized in the dictionary! Creature = type('Creature', (), {'p': Point(0, 0), 'd': Direction.n}) creature = Creature()
Closure
We have a closure in Python when:
- A nested function references a value of its enclosing function and then
- the enclosing function returns the nested function.
def get_multiplier(a): def out(b): return a * b return out
>>> multiply_by_3 = get_multiplier(3) >>> multiply_by_3(10) 30
- If multiple nested functions within enclosing function reference the same value, that value gets shared.
- To dynamicaly acces functions first free variable use
'<function>.__closure__[0].cell_contents'
.
Or:
from functools import partial <function> = partial(<function>, <argument_1> [, <argument_2>, ...])
>>> multiply_by_3 = partial(operator.mul, 3) >>> multiply_by_3(10) 30
Nonlocal
If variable is assigned to anywhere in the scope, it is regarded as a local variable, unless it is declared as global or nonlocal.
def get_counter(): a = 0 def out(): nonlocal a a += 1 return a return out
>>> counter = get_counter() >>> counter(), counter(), counter() (1, 2, 3)
Decorator
A decorator takes a function, adds some functionality and returns it.
@decorator_name def function_that_gets_passed_to_decorator(): ...
Debugger Example
Decorator that prints function's name every time it gets called.
from functools import wraps def debug(func): @wraps(func) def out(*args, **kwargs): print(func.__name__) return func(*args, **kwargs) return out @debug def add(x, y): return x + y
- Wraps is a helper decorator that copies metadata of function add() to function out().
- Without it
'add.__name__'
would return'out'
.
LRU Cache
Decorator that caches function's return values. All function's arguments must be hashable.
from functools import lru_cache @lru_cache(maxsize=None) def fib(n): return n if n < 2 else fib(n-1) + fib(n-2)
>>> [fib(n) for n in range(10)] [0, 1, 1, 2, 3, 5, 8, 13, 21, 34] >>> fib.cache_info() CacheInfo(hits=16, misses=10, maxsize=None, currsize=10)
Parametrized Decorator
from functools import wraps def debug(print_result=False): def decorator(func): @wraps(func) def out(*args, **kwargs): result = func(*args, **kwargs) print(func.__name__, result if print_result else '') return result return out return decorator @debug(print_result=True) def add(x, y): return x + y
Class
class <name>: def __init__(self, a): self.a = a def __repr__(self): class_name = type(self).__name__ return f'{class_name}({self.a!r})' def __str__(self): return str(self.a) @classmethod def get_class_name(cls): return cls.__name__
Constructor Overloading
class <name>: def __init__(self, a=None): self.a = a
Inheritance
class Person: def __init__(self, name, age): self.name = name self.age = age class Employee(Person): def __init__(self, name, age, staff_num): super().__init__(name, age) self.staff_num = staff_num
Comparable
- If eq() method is not overridden, it returns
'id(self) == id(other)'
, which is the same as'self is other'
. - That means all objects compare not equal by default.
class MyComparable: def __init__(self, a): self.a = a def __eq__(self, other): if isinstance(other, type(self)): return self.a == other.a return False
Hashable
- Hashable object needs both hash() and eq() methods and it's hash value should never change.
- Hashable objects that compare equal must have the same hash value, meaning default hash() that returns
'id(self)'
will not do. - That is why Python automatically makes classes unhashable if you only implement eq().
class MyHashable: def __init__(self, a): self.__a = copy.deepcopy(a) @property def a(self): return self.__a def __eq__(self, other): if isinstance(other, type(self)): return self.a == other.a return False def __hash__(self): return hash(self.a)
Sequence
- Methods do not depend on each other, so they can be skipped if not needed.
- Any object with defined getitem() is considered iterable, even if it lacks iter().
class MySequence: def __init__(self, a): self.a = a def __len__(self): return len(self.a) def __getitem__(self, i): return self.a[i] def __iter__(self): for el in self.a: yield el
Callable
class Counter: def __init__(self): self.a = 0 def __call__(self): self.a += 1 return self.a
Copy
from copy import copy, deepcopy <object> = copy(<object>) <object> = deepcopy(<object>)
Enum
from enum import Enum, auto class <enum_name>(Enum): <member_name_1> = <value_1> <member_name_2> = <value_2_a>, <value_2_b> <member_name_3> = auto() @classmethod def get_member_names(cls): return [a.name for a in cls.__members__.values()]
<member> = <enum>.<member_name> <member> = <enum>['<member_name>'] <member> = <enum>(<value>) name = <member>.name value = <member>.value
list_of_members = list(<enum>) member_names = [a.name for a in <enum>] member_values = [a.value for a in <enum>] random_member = random.choice(list(<enum>))
Inline
Cutlery = Enum('Cutlery', ['fork', 'knife', 'spoon']) Cutlery = Enum('Cutlery', 'fork knife spoon') Cutlery = Enum('Cutlery', {'fork': 1, 'knife': 2, 'spoon': 3})
Functions can not be values, so they must be wrapped:
from functools import partial LogicOp = Enum('LogicOp', {'AND': partial(lambda l, r: l and r), 'OR' : partial(lambda l, r: l or r)})
Exceptions
while True: try: x = int(input('Please enter a number: ')) except ValueError: print('Oops! That was no valid number. Try again...') else: print('Thank you.') break
Raising exception:
raise ValueError('A very specific message!')
Finally
>>> try: ... raise KeyboardInterrupt ... finally: ... print('Goodbye, world!') Goodbye, world! Traceback (most recent call last): File "<stdin>", line 2, in <module> KeyboardInterrupt
System
Command Line Arguments
import sys script_name = sys.argv[0] arguments = sys.argv[1:]
Print Function
print(<el_1>, ..., sep=' ', end='\n', file=sys.stdout, flush=False)
- Use
'file=sys.stderr'
for errors.
Pretty print:
>>> from pprint import pprint >>> pprint(dir()) ['__annotations__', '__builtins__', '__doc__', ...]
Input Function
- Reads a line from user input or pipe if present.
- The trailing newline gets stripped.
- The prompt string is printed to standard output before reading input.
<str> = input(prompt=None)
Prints lines until EOF:
while True: try: print(input()) except EOFError: break
Open Function
Opens file and returns a corresponding file object.
<file> = open(<path>, mode='r', encoding=None)
Modes:
'r'
- Read (default).'w'
- Write (truncate).'x'
- Write or fail if the file already exists.'a'
- Append.'w+'
- Read and write (truncate).'r+'
- Read and write from the beginning.'a+'
- Read and write from the end.'b'
- Binary mode.'t'
- Text mode (default).
Read Text from File:
def read_file(filename): with open(filename, encoding='utf-8') as file: return file.readlines()
Write Text to File:
def write_to_file(filename, text): with open(filename, 'w', encoding='utf-8') as file: file.write(text)
Command Execution
import os <str> = os.popen(<command>).read()
Or:
>>> import subprocess >>> a = subprocess.run(['ls', '-a'], stdout=subprocess.PIPE) >>> a.stdout b'.\n..\nfile1.txt\nfile2.txt\n' >>> a.returncode 0
Recursion Limit
>>> import sys >>> sys.getrecursionlimit() 1000 >>> sys.setrecursionlimit(5000)
Path
from os import path, listdir <bool> = path.exists(<path>) <bool> = path.isfile(<path>) <bool> = path.isdir(<path>) <list> = listdir(<path>)
>>> from glob import glob >>> glob('../*.gif') ['1.gif', 'card.gif']
Pathlib
This module offers classes representing filesystem paths with semantics appropriate for different operating systems.
from pathlib import Path pwd = Path() <Path> = Path('<path>' [, '<path>', <Path>, ...]) <Path> = <Path> / '<dir>' / '<file>'
<iter> = <Path>.iterdir() # Returns all files in a dir. <iter> = <Path>.glob('<pattern>') # Returns all matches. <Path> = <Path>.resolve() # Makes path absolute. <bool> = <Path>.exists() <bool> = <Path>.is_dir() <file> = <Path>.open()
<str> = str(<Path>) # Returns path as string. <str> = <Path>.name # Final component. <str> = <Path>.stem # Final component without extension. <str> = <Path>.suffix # Final component's extension. <Path> = <Path>.parent # Path without final component. <tuple> = <Path>.parts # All components as strings.
JSON
import json <str> = json.dumps(<object>, ensure_ascii=True, indent=None) <object> = json.loads(<str>)
To preserve order:
from collections import OrderedDict <object> = json.loads(<str>, object_pairs_hook=OrderedDict)
Read File
def read_json_file(filename): with open(filename, encoding='utf-8') as file: return json.load(file)
Write to File
def write_to_json_file(filename, an_object): with open(filename, 'w', encoding='utf-8') as file: json.dump(an_object, file, ensure_ascii=False, indent=2)
Pickle
import pickle <bytes> = pickle.dumps(<object>) <object> = pickle.loads(<bytes>)
Read Object from File
def read_pickle_file(filename): with open(filename, 'rb') as file: return pickle.load(file)
Write Object to File
def write_to_pickle_file(filename, an_object): with open(filename, 'wb') as file: pickle.dump(an_object, file)
SQLite
import sqlite3 db = sqlite3.connect(<filename>) ... db.close()
Read
cursor = db.execute(<query>) if cursor: <tuple> = cursor.fetchone() # First row. <list> = cursor.fetchall() # Remaining rows.
Write
db.execute(<query>) db.commit()
Bytes
Bytes object is immutable sequence of single bytes. Mutable version is called bytearray.
<bytes> = b'<str>' <int> = <bytes>[<index>] <bytes> = <bytes>[<slice>] <bytes> = b''.join(<coll_of_bytes>)
Encode
<bytes> = <str>.encode(encoding='utf-8') <bytes> = <int>.to_bytes(length, byteorder='big|little', signed=False) <bytes> = bytes.fromhex(<hex>)
Decode
<str> = <bytes>.decode('utf-8') <int> = int.from_bytes(<bytes>, byteorder='big|little', signed=False) <hex> = <bytes>.hex()
Read Bytes from File
def read_bytes(filename): with open(filename, 'rb') as file: return file.read()
Write Bytes to File
def write_bytes(filename, bytes_obj): with open(filename, 'wb') as file: file.write(bytes_obj)
Struct
- Module that performs conversions between Python values and a C struct, represented as a Python bytes object.
- Machine’s native type sizes and byte order are used by default.
from struct import pack, unpack, calcsize <bytes> = pack('<format>', <value_1> [, <value_2>, ...]) <tuple> = unpack('<format>', <bytes>)
Example
>>> pack('>hhl', 1, 2, 3) b'\x00\x01\x00\x02\x00\x00\x00\x03' >>> unpack('>hhl', b'\x00\x01\x00\x02\x00\x00\x00\x03') (1, 2, 3) >>> calcsize('>hhl') 8
Format
For standard sizes start format string with:
'='
- native byte order'<'
- little-endian'>'
- big-endian
Use capital letter for unsigned type. Standard size in brackets:
'x'
- pad byte'c'
- char (1)'h'
- short (2)'i'
- int (4)'l'
- long (4)'q'
- long long (8)'f'
- float (4)'d'
- double (8)
Array
List that can only hold elements of predefined type. Available types are listed above.
from array import array <array> = array(<typecode> [, <collection>])
Memory View
Used for accessing the internal data of an object that supports the buffer protocol.
<memoryview> = memoryview(<bytes> / <bytearray> / <array>) <memoryview>.release()
Deque
A thread-safe list with efficient appends and pops from either side. Pronounced “deck”.
from collections import deque <deque> = deque(<collection>, maxlen=None)
<deque>.appendleft(<el>) <deque>.extendleft(<collection>) # Collection gets reversed. <el> = <deque>.popleft() <deque>.rotate(n=1) # Rotates elements to the right.
Threading
from threading import Thread, RLock
Thread
thread = Thread(target=<function>, args=(<first_arg>, )) thread.start() ... thread.join()
Lock
lock = RLock() lock.acquire() ... lock.release()
Hashlib
>>> import hashlib >>> hashlib.md5(<str>.encode()).hexdigest() '33d0eba106da4d3ebca17fcd3f4c3d77'
Itertools
- Every function returns an iterator and can accept any collection and/or iterator.
- If you want to print the iterator, you need to pass it to the list() function!
Combinatoric iterators
>>> combinations('abc', 2) [('a', 'b'), ('a', 'c'), ('b', 'c')] >>> combinations_with_replacement('abc', 2) [('a', 'a'), ('a', 'b'), ('a', 'c'), ('b', 'b'), ('b', 'c'), ('c', 'c')] >>> permutations('abc', 2) [('a', 'b'), ('a', 'c'), ('b', 'a'), ('b', 'c'), ('c', 'a'), ('c', 'b')] >>> product('ab', [1, 2]) [('a', 1), ('a', 2), ('b', 1), ('b', 2)] >>> product([0, 1], repeat=3) [(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)]
Infinite iterators
>>> i = count(5, 2) >>> next(i), next(i), next(i) (5, 7, 9) >>> a = cycle('abc') >>> [next(a) for _ in range(10)] ['a', 'b', 'c', 'a', 'b', 'c', 'a', 'b', 'c', 'a'] >>> repeat(10, 3) [10, 10, 10]
Iterators
>>> chain([1, 2], range(3, 5)) [1, 2, 3, 4] >>> compress('abc', [True, 0, 1]) ['a', 'c'] >>> # islice(<collection>, from_inclusive, to_exclusive) >>> islice([1, 2, 3], 1, None) [2, 3] >>> people = [{'id': 1, 'name': 'Bob'}, {'id': 2, 'name': 'Bob'}, {'id': 3, 'name': 'Peter'}] >>> groups = groupby(people, key=lambda a: a['name']) >>> {name: list(group) for name, group in groups} {'Bob': [{'id': 1, 'name': 'Bob'}, {'id': 2, 'name': 'Bob'}], 'Peter': [{'id': 3, 'name': 'Peter'}]}
Introspection and Metaprograming
Inspecting code at runtime and code that generates code. You can:
- Look at the attributes
- Set new attributes
- Create functions dynamically
- Traverse the parent classes
- Change values in the class
Variables
<list> = dir() # Names of in-scope variables. <dict> = locals() # Dict of local variables. Also vars(). <dict> = globals() # Dict of global variables.
Attributes
class Z: def __init__(self): self.a = 'abcde' self.b = 12345
>>> z = Z() >>> vars(z) {'a': 'abcde', 'b': 12345} >>> getattr(z, 'a') 'abcde' >>> hasattr(z, 'c') False >>> setattr(z, 'c', 10)
Parameters
from inspect import signature sig = signature(<function>) no_of_params = len(sig.parameters) param_names = list(sig.parameters.keys())
Type
Type is the root class. If only passed the object it returns it's type. Otherwise it creates a new class (and not the instance!).
type(<class_name>, <parents_tuple>, <attributes_dict>)
>>> Z = type('Z', (), {'a': 'abcde', 'b': 12345}) >>> z = Z()
Meta Class
Class that creates class.
def my_meta_class(name, parents, attrs): attrs['a'] = 'abcde' return type(name, parents, attrs)
Or:
class MyMetaClass(type): def __new__(cls, name, parents, attrs): attrs['a'] = 'abcde' return type.__new__(cls, name, parents, attrs)
Metaclass Attribute
When class is created it checks if it has metaclass defined. If not, it recursively checks if any of his parents has it defined and eventually comes to type.
class MyClass(metaclass=MyMetaClass): def __init__(self): self.b = 12345
Operator
from operator import add, sub, mul, truediv, floordiv, mod, pow, neg, abs, \ eq, ne, lt, le, gt, ge, \ not_, and_, or_, \ itemgetter, attrgetter, methodcaller
import operator as op product_of_elems = functools.reduce(op.mul, <list>) sorted_by_second = sorted(<list>, key=op.itemgetter(1)) sorted_by_both = sorted(<list>, key=op.itemgetter(1, 0)) LogicOp = enum.Enum('LogicOp', {'AND': op.and_, 'OR' : op.or_}) last_el = op.methodcaller('pop')(<list>)
Eval
Basic
>>> from ast import literal_eval >>> literal_eval('1 + 2') 3 >>> literal_eval('[1, 2, 3]') [1, 2, 3] >>> ast.literal_eval('abs(1)') ValueError: malformed node or string
Using Abstract Syntax Trees
import ast from ast import Num, BinOp, UnaryOp import operator as op LEGAL_OPERATORS = {ast.Add: op.add, ast.Sub: op.sub, ast.Mult: op.mul, ast.Div: op.truediv, ast.Pow: op.pow, ast.BitXor: op.xor, ast.USub: op.neg} def evaluate(expression): root = ast.parse(expression, mode='eval') return eval_node(root.body) def eval_node(node): node_type = type(node) if node_type == Num: return node.n if node_type not in [BinOp, UnaryOp]: raise TypeError(node) operator_type = type(node.op) if operator_type not in LEGAL_OPERATORS: raise TypeError(f'Illegal operator {node.op}') operator = LEGAL_OPERATORS[operator_type] if node_type == BinOp: left, right = eval_node(node.left), eval_node(node.right) return operator(left, right) elif node_type == UnaryOp: operand = eval_node(node.operand) return operator(operand)
>>> evaluate('2 ^ 6') 4 >>> evaluate('2 ** 6') 64 >>> evaluate('1 + 2 * 3 ** (4 ^ 5) / (6 + -7)') -5.0
Coroutine
- Similar to Generator, but Generator pulls data through the pipe with iteration, while Coroutine pushes data into the pipeline with send().
- Coroutines provide more powerful data routing possibilities than iterators.
- If you built a collection of simple data processing components, you can glue them together into complex arrangements of pipes, branches, merging, etc.
Helper Decorator
- All coroutines must be "primed" by first calling next().
- Remembering to call next() is easy to forget.
- Solved by wrapping coroutines with a decorator:
def coroutine(func): def out(*args, **kwargs): cr = func(*args, **kwargs) next(cr) return cr return out
Pipeline Example
def reader(target): for i in range(10): target.send(i) target.close() @coroutine def adder(target): while True: item = (yield) target.send(item + 100) @coroutine def printer(): while True: item = (yield) print(item) reader(adder(printer())) # 100, 101, ..., 109
Progress Bar
# $ pip3 install tqdm from tqdm import tqdm from time import sleep for i in tqdm([1, 2, 3]): sleep(0.2) for i in tqdm(range(100)): sleep(0.02)
Plot
# $ pip3 install matplotlib from matplotlib import pyplot pyplot.plot(<data_1> [, <data_2>, ...]) pyplot.savefig(<filename>, transparent=True) pyplot.show()
Argparse
from argparse import ArgumentParser desc = 'calculate X to the power of Y' parser = ArgumentParser(description=desc) group = parser.add_mutually_exclusive_group() group.add_argument('-v', '--verbose', action='store_true') group.add_argument('-q', '--quiet', action='store_true') parser.add_argument('x', type=int, help='the base') parser.add_argument('y', type=int, help='the exponent') args = parser.parse_args() answer = args.x ** args.y if args.quiet: print(answer) elif args.verbose: print(f'{args.x} to the power {args.y} equals {answer}') else: print(f'{args.x}^{args.y} == {answer}')
Table
Prints CSV file as ASCII table:
# $ pip3 install tabulate import csv from tabulate import tabulate with open(<filename>, encoding='utf-8') as file: lines = csv.reader(file, delimiter=';') headers = [header.title() for header in next(lines)] table = tabulate(lines, headers) print(table)
Curses
# $ pip3 install curses from curses import wrapper def main(): wrapper(draw) def draw(screen): screen.clear() screen.addstr(0, 0, 'Press ESC to quit.') while screen.getch() != 27: pass def get_border(screen): from collections import namedtuple P = namedtuple('P', 'x y') height, width = screen.getmaxyx() return P(width - 1, height - 1)
Image
Creates PNG image of greyscale gradient:
# $ pip3 install pillow from PIL import Image width = 100 height = 100 size = width * height pixels = [255 * i/size for i in range(size)] img = Image.new('L', (width, height), 'white') img.putdata(pixels) img.save('test.png')
Modes
'1'
- 1-bit pixels, black and white, stored with one pixel per byte.'L'
- 8-bit pixels, greyscale.'RGB'
- 3x8-bit pixels, true color.'RGBA'
- 4x8-bit pixels, true color with transparency mask.'HSV'
- 3x8-bit pixels, Hue, Saturation, Value color space.
Audio
Saves a list of floats with values between -1 and 1 to a WAV file:
import wave, struct samples = [struct.pack('<h', int(a * 30000)) for a in <list>] wf = wave.open('test.wav', 'wb') wf.setnchannels(1) wf.setsampwidth(2) wf.setframerate(44100) wf.writeframes(b''.join(samples)) wf.close()
Plays Popcorn
# pip3 install simpleaudio import simpleaudio, math, struct from itertools import chain, repeat F = 44100 S1 = '71♪,69,,71♪,66,,62♪,66,,59♪,,,' S2 = '71♪,73,,74♪,73,,74,,71,,73♪,71,,73,,69,,71♪,69,,71,,67,,71♪,,,' get_pause = lambda seconds: repeat(0, int(seconds * F)) sin_f = lambda i, hz: math.sin(i * 2 * math.pi * hz / F) get_wave = lambda hz, seconds: (sin_f(i, hz) for i in range(int(seconds * F))) get_hz = lambda n: 8.176 * 2 ** (int(n) / 12) parse_n = lambda note: (get_hz(note[:2]), 0.25 if len(note) > 2 else 0.125) get_note = lambda note: get_wave(*parse_n(note)) if note else get_pause(0.125) samples_f = chain.from_iterable(get_note(n) for n in f'{S1}{S1}{S2}'.split(',')) samples_b = b''.join(struct.pack('<h', int(a * 30000)) for a in samples_f) simpleaudio.play_buffer(samples_b, 1, 2, F)
Url
from urllib.parse import quote, quote_plus, unquote, unquote_plus
Encode
>>> quote("Can't be in URL!") 'Can%27t%20be%20in%20URL%21' >>> quote_plus("Can't be in URL!") 'Can%27t+be+in+URL%21'
Decode
>>> unquote('Can%27t+be+in+URL%21') "Can't+be+in+URL!" >>> unquote_plus('Can%27t+be+in+URL%21') "Can't be in URL!"
Scraping
# $ pip3 install requests beautifulsoup4 >>> import requests >>> from bs4 import BeautifulSoup >>> url = 'https://en.wikipedia.org/wiki/Python_(programming_language)' >>> page = requests.get(url) >>> doc = BeautifulSoup(page.text, 'html.parser') >>> table = doc.find('table', class_='infobox vevent') >>> rows = table.find_all('tr') >>> link = rows[11].find('a')['href'] >>> ver = rows[6].find('div').text.split()[0] >>> link, ver ('https://www.python.org/', '3.7.2')
Web
# $ pip3 install bottle from bottle import run, route, post, template, request, response import json
Run
run(host='localhost', port=8080) run(host='0.0.0.0', port=80, server='cherrypy')
Static Request
@route('/img/<image>') def send_image(image): return static_file(image, 'images/', mimetype='image/png')
Dynamic Request
@route('/<sport>') def send_page(sport): return template('<h1>{{title}}</h1>', title=sport)
REST Request
@post('/odds/<sport>') def odds_handler(sport): team = request.forms.get('team') home_odds, away_odds = 2.44, 3.29 response.headers['Content-Type'] = 'application/json' response.headers['Cache-Control'] = 'no-cache' return json.dumps([team, home_odds, away_odds])
Test:
# $ pip3 install requests >>> import requests >>> url = 'http://localhost:8080/odds/football' >>> data = {'team': 'arsenal f.c.'} >>> response = requests.post(url, data=data) >>> response.json() ['arsenal f.c.', 2.44, 3.29]
Profile
Basic
from time import time start_time = time() # Seconds since Epoch. ... duration = time() - start_time
High Performance
from time import perf_counter as pc start_time = pc() # Seconds since restart. ... duration = pc() - start_time
Timing a Snippet
from timeit import timeit timeit('"-".join(str(a) for a in range(100))', number=10000, globals=globals(), setup='pass')
Line Profiler
# $ pip3 install line_profiler @profile def main(): a = [*range(10000)] b = {*range(10000)} main()
Usage:
$ kernprof -lv test.py
Line # Hits Time Per Hit % Time Line Contents
==============================================================
1 @profile
2 def main():
3 1 1128.0 1128.0 27.4 a = [*range(10000)]
4 1 2994.0 2994.0 72.6 b = {*range(10000)}
Call Graph
Generates a PNG image of call graph with highlighted bottlenecks:
# $ pip3 install pycallgraph from pycallgraph import output, PyCallGraph from datetime import datetime time_str = datetime.now().strftime('%Y%m%d%H%M%S') filename = f'profile-{time_str}.png' drawer = output.GraphvizOutput(output_file=filename) with PyCallGraph(output=drawer): <code_to_be_profiled>
NumPy
Array manipulation mini language. Can run up to 100 times faster than equivalent Python code.
# $ pip3 install numpy import numpy as np
<array> = np.array(<list>) <array> = np.arange(from_inclusive, to_exclusive, step_size) <array> = np.ones(<shape>) <array> = np.random.randint(from_inclusive, to_exclusive, <shape>)
<array>.shape = <shape> <view> = <array>.reshape(<shape>) <view> = np.broadcast_to(<array>, <shape>)
<array> = <array>.sum(<axis>) indexes = <array>.argmin(<axis>)
- Shape is a tuple of dimension sizes.
- Axis is an index of dimension that gets collapsed.
Indexing
<el> = <2d_array>[0, 0] # First element. <1d_view> = <2d_array>[0] # First row. <1d_view> = <2d_array>[:, 0] # First column. Also [..., 0]. <3d_view> = <2d_array>[None, :, :] # Expanded by dimension of size 1.
<1d_array> = <2d_array>[<1d_row_indexes>, <1d_column_indexes>] <2d_array> = <2d_array>[<2d_row_indexes>, <2d_column_indexes>]
<2d_bools> = <2d_array> > 0 <1d_array> = <2d_array>[<2d_bools>]
- If row and column indexes differ in shape, they are combined with broadcasting.
Broadcasting
Broadcasting is a set of rules by which NumPy functions operate on arrays of different sizes and/or dimensions.
left = [[0.1], [0.6], [0.8]] # Shape: (3, 1) right = [ 0.1 , 0.6 , 0.8 ] # Shape: (3)
1. If array shapes differ, left-pad the smaller shape with ones:
left = [[0.1], [0.6], [0.8]] # Shape: (3, 1) right = [[0.1 , 0.6 , 0.8]] # Shape: (1, 3) <- !
2. If any dimensions differ in size, expand the ones that have size 1 by duplicating their elements:
left = [[0.1, 0.1, 0.1], [0.6, 0.6, 0.6], [0.8, 0.8, 0.8]] # Shape: (3, 3) <- ! right = [[0.1, 0.6, 0.8], [0.1, 0.6, 0.8], [0.1, 0.6, 0.8]] # Shape: (3, 3) <- !
3. If neither non-matching dimension has size 1, rise an error.
Example
For each point returns index of its nearest point ([0.1, 0.6, 0.8] => [1, 2, 1]
):
>>> points = np.array([0.1, 0.6, 0.8]) [ 0.1, 0.6, 0.8] >>> wrapped_points = points.reshape(3, 1) [[ 0.1], [ 0.6], [ 0.8]] >>> distances = wrapped_points - points [[ 0. , -0.5, -0.7], [ 0.5, 0. , -0.2], [ 0.7, 0.2, 0. ]] >>> distances = np.abs(distances) [[ 0. , 0.5, 0.7], [ 0.5, 0. , 0.2], [ 0.7, 0.2, 0. ]] >>> i = np.arange(3) [0, 1, 2] >>> distances[i, i] = np.inf [[ inf, 0.5, 0.7], [ 0.5, inf, 0.2], [ 0.7, 0.2, inf]] >>> distances.argmin(1) [1, 2, 1]
Basic Script Template
#!/usr/bin/env python3 # # Usage: .py # from collections import namedtuple from enum import Enum import re import sys def main(): pass ### ## UTIL # def read_file(filename): with open(filename, encoding='utf-8') as file: return file.readlines() if __name__ == '__main__': main()