简介
本文是Black Hat USA 2025议题《AI Agents for Offsec with Zero False Positives》的讲稿,作者Brendan Dolan-Gavitt提出“AI代理+确定性验证”方案,解决传统LLM在漏洞挖掘中的高误报难题。通过“证据-验证”双阶段流程:LLM先定位可疑点,再用非AI脚本(flag回显、时延差异、缓存投毒等)进行可复现验证,已在Docker Hub 2500万镜像扫描中捕获174个漏洞、22个CVE,误报率趋近零。文中给出Redmine权限绕过、Druid SSRF、MapProxy文件读取等实战案例,并开源自动化工具链,为大规模安全测试提供新范式。
提示
本站仅做资料的整理和索引,转载引用请注明出处
时间: 大小: 9.03 M 下载: 0